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Abstract. This paper is devoted to the study of normal form transformations and resonances.
The usual theory of normal forms is formulated in a more general context: the quasi-monomial
formalism, in which negative and non-integer exponents are accepted. The general coefficient of
the Poincag series is explicitly constructed in the non-resonant case, for any QM system. From
there arises the necessity to generalize resonances to non-analytical vector fields. Using particular
changes of parameterization, we extend this resonance relation to the nonlinear part of the vector
field. The changes of variables that arise from this provide approximations of the solutions far from
the fixed point.

1. Introduction

The Poincag—Dulac normal form approach for solving nonlinear systems of ODEs is among
the most interesting methods in computer algebra. However, the iteration of the existing
algorithms [1] leads to extremely heavy calculations that cannot be performed by hand. Even
using computer algebra languages, the construction of the Peisesies appeared to be
very difficult, since, among other problems, the general structure of the coefficient was still
unknown. This question has been recently solved, independently by Ecalle [2], and by the
present authors [3].

This paper is not only an extended version of [3]. It also contains new results: in section 4,
using particular changes of time parametrization, we find criteria (the generalized resonance
conditions) for the system to be conjugated to a system that is linear. The transformation
leading to this simplified (integrable) system is close to the Pointransformation, and can
thus also be explicitly constructed.

Hereafter, we introduce the usual notion of normal form and recall the principle of
resonance. We also give a short introduction to the quasi-monomial (QM) notation that will
be used throughout this paper.
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1.1. Normal forms

Ina general context, normal form theory [4—6] applies to analytical systems of ODEs. Consider
the following system:
Xo=hxi+ Y ai(m)x™ (i=1,...,N) 1)
mi>2

where the dot denotes the derivative with respect to the independent variable (say the time
for instance), and where we used a multi-index notation:

m = (my, my,...,my)
m o__ _mp_mp my
X —Xl x2 ...XN

and /m|=mi+my+.---+my.

Them; are positive integer numbers (since the system is analytic), and the origin is a fixed
point. The conditiorym| > 2 ensures tha} _ g; (m)x™ is purely nonlinear.

The principle of normal form theory is to find an analytical change of coordinates, with
the origin as a fixed point, such that the vector field becomes simpler to study in terms of
the new variables, i.e. we try to find variables for which the system is linear, or at least, to
remove some inessential part of the nonlinearity. Doing so the system of nonlinear ODEs is
reduced to a system of linear PDEs: the homological equations for the transformation. If we
find the linearizing change of variables, it means that the phase portrait around the origin is
topologically equivalent to the phase portrait of a linear system; in other words: the nonlinearity
does not affect the qualitative behaviour of the system.

Practically, let us expand the change of variables in Taylor series:

xp=yi+ Y bi(m)y™

|m|>1

where we assume analyticity of the mapping and its proximity to the identity. Using this in
(1), gives a new system

Vi =Aiyi t Z ci(m)y™ @)
|m|>1

where the linear part is unchanged. Now let us try to fix the coefficiefita) in order to
remove monomials in this new system. Doing this, we have to solve, order by order, the
hierarchy of algebraic equations:

(m - X = A)bi(m) = F;(m) ®3)

where(m - \) stands fOI’ZIIC\;l my iy, and theF; (m) are some functions of the;, and of the

a;(p) andb; (p) (with p; < m;, and|p| < |m|). In general, the recursion (3) cannot be solved
explicitly in compact form: it has to be studied order by order. It can at least be formally solved
provided that there is no vanishing facten - A — A;); otherwise, in general, the corresponding
equation cannot be solved. The relation

is called aresonance conditianWhen a resonance condition is satisfied, the new system still
contains nonlinear monomials; these are cakstnant monomialdn the non-resonant case,

the change of variable is also an expression of the solution as a series of exponentials of the
independent variablg since the new equations are simply linear. It can happen that some
(m - A — ;) and simultaneously the correspondiigm) are vanishing. In this case, the
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coefficientsh; (m) are free (and are usually chosen equal to zero). Thus, the best we can do is
to find new coordinates for which the coefficients of (2) satisfy

ci(m) =0 if m-A—2x; #0.
The system (2) is then called thermal formof the system (1). The transformation leading to
it is the Poinca© transformation The normal form system can be reduced further [6, 7] (i.e.
some resonant monomials can be removed) by a judicious choice of the coeffici@niof
the resonant monomials in the Poineaeries. However, the system will still contain nonlinear
terms.

An important question is: when is the Poineaeries convergent? From the relation (3),
we see that

bi(m) ~ (m-A—2)~*
and, even if no resonance condition is satisfied, the quagatity A\ — A;) may become close
to zero asn increases; the correspondibgm) will become large, and this can cause the
divergence of the Poincasseries.

All we can do is to find conditions on the spectrimsuch that the Poincarseries is
convergent, no matter what the nonlinearity is. These conditions are thus sufficient but not
necessary conditions. The less restrictive known condition is Bruno’s diophantine condition [6]
(equivalent to a condition found byitRsman [16] for diffeomorphisms): let us define

wk) =inf(Jm - X — i) with & = |m].
Then the Poinca@r series is convergent if

1 1
Z > log (a)(zk)> < 00.

k>1

Note that the convergence domain of the Poiacseries is a neighbourhood of the origin
in phase space, i.e. a certain domain around zero for the varigblékhis means that the
convergence depends on the initial condition®), that are themselves functions of the initial
conditionsx; (0) (via the inverse of the Poindgatransformation). The choice of a set of initial
conditions [;(0)] selects a trajectory in phase space. The Pomearies converges during
the time interval for which this trajectory crosses the neighbourhood of the origin. Hence, this
time interval may not exist if the series diverges.

The convergence theorem can also be applied to resonant systems: the coefficients for the
resonant monomials are then left free, and only the non-vanighing\ — A;)) are taken into
account in the definition ab (k).

1.2. The QM formalism

The QM formalism [8—10] characterizes the system by two real or complex rectangular constant
matrices. Their dimension depends on the nonlinearity of the system, and can be infinite.
QM differential systems are systems that can be written as

m N
xi=aixi+xiZAij1_[xlfjk i=1...,N) (4)
=1 k=1

wherem is arbitrary. Thed;; and theB; are thus real or complex constants; this class is quite
general, since (4) contains most of the systems of interest in physics, biology, chemistry,

Now consider the embedding of system (4), obtained by adding to it:tii@lowing
variables:

N
B .
XN+j=1_[xk’k (G=1,...,m).
k=1
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Taking the time derivative of these new variables, we find(fie- m)-dimensional system:

N+m

).C,' = )L,'X,' + X E M,-pxp
p=1

which is of the form of the Lotka—\olterra (LV) system [11,12]. These systems were first
introduced to study the time evolution of interacting species. They appeared to have rich
dynamical properties, and to show complex behaviours, like limit-cycles and even chaotic
attractors. Even more: they seem to be the simplest form for a system of ODEs still showing
this complex behaviour, since any further simplification (for example: the case of a degenerated
matrix M) implies the integrability of the system.

In the above LV equations,runs from 1 toN +m. Thea; and the (square) matrid are
given by:

A= (a1, ..., an, (BoA), ..., (Bo),)"

0(n><n) A(nxm) (5)
M= (O(mxn) (B OA)(mxm))

where(B o 1); = Y1, Bik, and(B o A);j = Y&, BiyAj. In expression (5), the upper
index gives the dimension of the matrices. The entries'Bf'0are all vanishing. Note that
this LV system contains a closed subsystem, composed of the:laatiables (the QMs).
This subsystem contains all the information about the dynamics of the QM system. If, for
instanceN < m, then itis possible to show that the QM system has first integrals that permits
one to reduce its dimension from to m. The use of the largetN + m)-dimensional LV
system is more natural, and practically, we do not have to worry about the inverse of the QM
transformation [8, 9]: the original variables are just the f¥stariables of the LV system.

By adding one more variable to the system, which is set equal to one:

X(N+m+1 =0 XNt =10) =1

we can include the linear part in the matdik
N+m+1

).C,‘ = X; Z M,‘jx]' (6)
j=1
with:
My My ... Mg A1
M>, My ... Mo 4m) A2
M= . : :
M(n+m)l M(n+m)2 oo M(n+m)(n+m) )V(n+m)
0 0 0 0

2. Structure of the Poincaré transformation

Since we know that any QM system can be brought to the canonical LV form, we now focus
on constructing the Poincaseries for LV systems (the generalization to QM system will be
straightforward):

N

)-C,‘Z)\.,‘)C,""xiZMinj @G=1...,N) (7)

i=1
where the linear part is explicitly written. It has been known, since the work of Carleman
[13,14], that a nonlinear system can be viewed as an infinite-dimensional linear system. This
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can be realized by considering as new variables all the monomials one can build with products
of positive integer powers of the. Using the multi-index notation:

. my _.m2 my
Xm=x1'X5% ... xy

and derivating these new variables, we find:

N N

X =(m - NXpm+> <Z m1M1p>X(m+ep). (8)
p=1 NI=1

wheree, is a unit vector: (e,); = 8,5, and Xpie, IS Xy, +1...my- This infinite-

dimensional linear system (8) is characterized by a triangular m&tnxhich is given by

N N
Rmp = (m N )\)(Smp + Z Z mkMkla(mﬂz/).p' (9)
k=1 [=1
For an original system (7) that would be linear (i.e. the mafixanishes) system (8) would
be purely diagonal. This implies that the Poirefransformation on (7), for non-vanishing
matrix M, but in absence of any resonance, corresponds to the diagonalization of the infinite-
dimensional matrix defined by system (&),,.
Consider now the operatdr defined by the relation

+ Zk Rmk(l - am.k)Lkp
R pp

where, once again, the indices are multiple (the sum kvgia multi-sum over theV indices
k; running from O tooo, andé,, , stands 0, ,, - - - Sy, py)-

If Ry, is triangular (that isR,,, = 0 if there exists at least one integebetween 1 and
N, such thain; > pi) and if Ry, # Rpp (thatism - A # p - A) for all m # p, then relation
(10) definesL,,,, without ambiguity. Indeed, the denominator never vanishes, and, for any
finite m andp, L., is given by a finite sum of terms. The conditi®),,,, # R,, form # p
implies that the relatiom - A = 0, wherer is a vector of positive or vanishing integers, is
satisfied only ifr, = O for all k and restricts system (7) to the non-resonant case: it is easy to
see that resonances of the kind\ = A; with r; = 0 has no implication on the Poiné&eseries
for a LV system, and more generally, for differential systems of the fgre A;x1 + x; f; (x)
with f; analytic.

Given these conditions, we claim thatdiagonalizesk. More precisely, in our case this
means that, considering the inverse operéator defined by

me = (Sm,p - Rmm + 5mv P (10)

Y LoiLip =) LukLiy =8mp (11)
k k
we have:
Z L RioLop = RimpSmp- (12)
k,o

The question of the existence of the inverse operatdris obvious. This operator represents
the inverse of the Poincartransformation. The latter is a diffeomorphism. Hence, when it
exists, so does its inverse. The analogue of the relation (1@)fbis
Zk L;zlk Rkp(l — Sk.,p)

Rpp — Rypm + ‘Sm,p .
Let us now prove the proposition for the relation (10) (the demonstration for (13) goes along
the same lines): multiplying both sides of (10) @, — Rimm + 6m.p) ONe finds

Z Rkakp = meRpp + 8m,p(me - 1) - 5Tn,p(Rpp - Rmm) (14)
k

Lt = 8mp— (13)
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We now show that the last two terms of (14) are vanishing. It is clearly the case for
8m.p(Rpp — Rmm). FOr 8, p(Limp — 1) we demonstrate that, thanks to the fact tRgi,
is triangular, so id,,,, and all the elements,,,,,, are equal to one. To show this, consider
the series obtained by iterating (10). This will be a series of poweRs, (1 — 8, ,) (with
coefficients depending om andp). Now, the elements of theth power ofR,,,,(1 — 8,,.)
for which p; < m; +k are all equal to zero. This implies that the only contributior1g,,
comes from the first term of the series, thad,is,. SO,Lm = 1, andd,, ,(Lympy — 1) = 0.
Then multiplying (14) byL 1 and summing ovem, we find the announced result.

Taking this result back to the original LV system, we can build the Pomsaries for
it. We insert the matrix (9) in (10) and, writing (10) fan = ¢;, we find after some simple
algebra:

00 N
Xi =i Z Z Piisiy..in YirYiz - - - Vi (15)
n=0 il,iz....ﬁin—l
wherei = 1, ..., N and with tensors given by:
M, (Mij, + M) ... (My;, + My, +---+M;
Piiliz,,,i” — ”1( ”2 11 2) ( In 11l n—1 n) . (16)
l,,()"l,, 1 +)"i,,) AR ()"il +... 4+ )“i,l)

The term corresponding o= 0 is, by convention, set equal to 1.
The relation (13) can be used to compute the inverse of the Péitreausformation:

0 N
Yi=x ) (D" D iy i XXy - X, 7
n=0 [1,[2,...,i,l=l

with
L. . = Mill(Mllz + Mlllz) v (Mii,, + Milin +..-F Min—1in)
e ll(kil+)\'2)"'()"i1+'.'+)“in)

Note that the dependence on the mat¥ixis exactly the same as for the direct Poirgcar

transformation; the only difference is the order of the indices ohthia the denominator.
Using the QM formalism, we can now build the analogues of the Pdértcansformation

for a general QM system. We merely have to putihgiven in (5), and to write (15) for the

variables of the QM system. This gives

) f,?M,?(H ““) (1)

5s=0 j1,..., ki=

B +-+B;
—n Y Z P:E?”?? T, (19)

s=0 j1,..., 71

(18)

Now, P2")is given by:
ljl(Aljz +(Bo A)jljZ) cee (A[jx +(Bo A)jljx +.--+(Bo A)ju—l)jx)
(BoA)j((BoA)j,,y t(BoA);)...((BoA)j, +---+(Bok)j) '

The simple form of the LV system also allows to write explicitly the hierarchy (3), even for a
resonant system; one has to substitute in the LV system the series

xi =y y_ bi(m)y™

|m|>0

The time derivatives of the variables are
yi =Xy Vi Z ci(m)y™

m
|m|>0

(20)
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One then gets

N
D ci@bim) y™m Y (- Nbi(r) YT Y Y bi(r)(r - c(m)) y""

rm j=1

N
= My > bi(m)b;(r)y" .
j=1

r,m

This equation implies the following infinite set of equations:

N
(r-XNbim)=Y My Y bi(m)b;(my)
j=1

— Y bimo)[ci(my) + (M1 - c(m2)]. (21)

Inthe resonant case, thgm) can be chosen equalto zero as far as no resonance is encountered.
When the lowest-order resonance occurs, say ferrg with |rg| = ng, the left-hand side of
the equation is vanishing. One then gets the equation

N
ciro) =Y My > bi(myb;(my).
j=1

mytma=ro—e;

In the non-resonant case, one has:

N
r-Nbi(m) =) M; Y bi(myb;(ma)
j=1

mitmp=r—e;

which is almost the same expression as the previous one for the normal form coefficient.
Comparing this to the result obtained via the Carleman embedding, we are able to write

Co(ro) = Z M, (Mij, + Miyj,) - .. (M, + -+ -+ M,

e[1+---+e,n0:r0 )\'ino ()\'inofl + )\'ino) te ()\'il teeot )\'ino—l)

110711‘”0)

which in fact reduces to

M;i M;,;,(M;
Ciro= Y. —

e’1+"'+ei"o =rg )\ino ()\

+ Miyip) ... (M, +- -+ M;

Fhip) oo iy + o iy )

103 no—lino)

ing—1

The above results give compact expressions for the coefficients of the Foseras. They

are, however, not easily found from the hierarchy (21), even in the non-resonant case, because
it does not give the tensof;, _; as they are given in (16), but their symmetrized form, which

are much longer to write. Furthermore, the similarity in the structure of these coefficients with
the coefficients of the Taylor series obtained in [8] is striking.

3. Resonances in the QM context

The results presented in the previous sections were already briefly presented in [3]. We now

present new developments about the linearizability character of non-analytical vector fields.
We thus derived the general structure of the Taylor and the P& seaies for LV systems,

and we showed that the QM formalism permits one to extend these results to any QM system.

Consequently, it is necessary to extend the usual notion of resonance to systems that are not

especially analytic. We do this by associating a resonance with a vanishing factor in the

denominator of a coefficient (20). Restricting ourselves to analytic systems, we show that
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vanishing denominators may appear even in the non-resonant case [2]. These resonances are
called fictive resonances. They have no consequence, due to the analytical character of the
vector field. Indeed, the factor that multiplies the fictive resonance is always vanishing. The
extension of this notion to the more general QM context is straightforward, and, in fact, gives
the conditions under which the resonant monomials do not appear in the normal form system.

3.1. Resonance

In the QM context, the usual resonance relation has to be modified in order to include all
possible vanishing denominator in (20). This generalized resonance condition is:

> v;Y Byh=v-B-A=0 (22)

with v; a positive or vanishing integer (afe| > 1).

Let us precise that the resonance of an analytic system does not imply necessarily that
there exists a satisfying (22). To show this, let us consider an example of analytic resonant
system:

X1 =—x1+ axfx% + Bx1xo
X =xo+ y)clxé5 + (ng.

This system is clearly resonant:- A = 0 forv = (v, v). The QM matrices, and the vectar

are
1 2
B=(0 1 A:aﬂo and Az_l.
0 2 y 0 § 1
1
BO)\Z(:L)
2

and relation (22) is never satisfied.

When a situation like this arises, it means that the relation (3) corresponding to the
resonance is trivially satisfied (it reduces to 28 0’, that is (m - A — A;) and F;(m) are
vanishing in the same time). The resonance is compatible with the nonlinearity, in the sense
that it is not an obstacle to the linearization (the corresponding coefficient of the Roincar
series is undetermined, and does not affect the coefficient of the lowest order monomials of the
normal form system). On the other hand, we may also have a situation in which a relation (22)
is satisfied, with a normal form system that is still linear. This will be discussed in the next
section.

Hence,

3.2. Fictive resonances

We start with a QM system:

m N B
)'cizkix,-+x,- E A,-jl_[xk’k
j=1 k=1

and we suppose itis analytic. Thisimplies conditions onthe matd@xlB: each monomial
(including the factor;) has to be composed of integer positive powers of the variables. So,
for a fixed index;j between 1 aneh, B, is a positive or vanishing integer number, except for
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one indexk (between 1 and@V), for which we can haveé8;, = —1, in this case (i.e., foj
andk such thatB;; = —1) we have the condition oA: A;; (with the samej than inBjy) is
vanishing for every index # k. We also impose the condition thgij,f’:l Bjr > 1,insuch a
way that the linear part of the system is limited to the tekims.

Inwhat follows, we consider that this systemis notresonant, i.e. theréNsadimensional
vectorwv, with integer positive (or vanishing) componentssuch that

N
’U-)\szk)\kZO or Ai.

In this case, the general theory of normal form, introduced in the beginning of this paper, tell
us that the system can be (at least formally) linearized, and that there will be no vanishing
denominator in the Poincatransformation. If we simply write the series (19), we obtain the
Poincaé series for the QM system; but this time, it really is the Poiadaansformation
since the system is analytic. Moreover, the absence of any resonance lets us think that
no vanishing denominator will be encountered in the calculation. However, if one naively
calculates the Poincaseries (19), one may still find vanishing denominators: these are called
fictive resonancesWVhen looking more carefully, one observes the following: the numerators
corresponding to fictive resonances are vanishing too. Moreover, the corresponding monomials
contain negative powers of the variables, and are thus not considered at all in the usual approach
(i.e. using the recursion (21)). Let us now show this more explicitly.

Afictive resonance corresponds to avanishing sugBoh) ;. Letthis particular vanishing
combination be

0=(BO)\)jl+(BO)¥)j2+"'+(BO)\)jS:’U')L

In order to respect the non-resonant character of the original equations, the vector of integers
v has to contain either one component which is smaller than or equa2 tor at least two
components equal tel. In other wordsthe sum of all the negative components dfas to
be smaller than or equal te-2.

The first consequence of this is, as announced, that the corresponding monomial contains
negative powers of the variables. It is given by

( ﬁ /1’<1) < 1_[ Vi jvh) — 1_[ yBllk*'szk+ +Bjk — 1_[ v

k=1 k=1
and even with the factoy; which multlpl|es this monomial in series (19), there will still be
some variables with negative exponents.
If we push this analysis further we have to look at the consequences of the presence of a
fictive resonance on the corresponding numerator. To do this, let us first treat a particular case,
and consider a fictive resonance of the form

=(Bol)i1+(BoA)=v-A
with v = v, = —1 andvy;, > —1 fork # 1,2. We can choose, without loss of generality,

B11 = By, = —1, andBjy, = B,1 = 0. This fictive resonance will appear, for the first time, in
the term corresponding to= 2 in expressions (19) and (20):

v B
J1.j2=1 J2 J1 J2d k=1

when, eitherj; = 1 andj, = 2, orj; = 2 andj, = 1. In the first case, we have as the

numerator

Aj1(App+ (Bo A)1p) = Aj1Ajp + Aj1(B o A)po.
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We know thatA;; is vanishing, except far= 1; we also know tha#i;, = 0, except foi = 2.
So, the productd;1 A;, is always vanishing, whateveis. Moreover(B o A)12 iS

N
Z B1 Ak = B12A22 =0
=1

(the first equality is a consequenceAf, ~ J; 2, the second is due tB;, = 0) and so the
whole numerator is vanishing. The same holdsjfoe 2, j, = 1.
Let us now take a look at the next order= 3 in (19) and (20)); the coefficient is:
Aiji(Ajj, +(Bo A)jj,)(Ajjs +(Bo A)jyjy +(Bo A)jj)

(BoA)p[(Bod)j,+(BoX)l[(BoA),+(BoA);,+(BoA)]
Problems will arise either whej3 = 1 andjz = 2, or whenj, = 2 andjz = 1. In the first
situation, the factor of the fictive resonance is

Ajj(Ajip+(BoA)j1)(Aip+ (Bo A)j2)

(BoA)2(BoA)j, '

where we took into account the fact thd@ o A);, = 0. If, for example; = 1, we have

A1 (A1n+(BoA)j1)(BoA)j2

(Bol)2(BoA)j,

and this quantity is not vanishing, so we have to take into account the symmetric contribution
corresponding tg, = 2 andjz; = 1in (23):

Ajjj(Ap+ (Bo A)jp)(Ajr+ (Bo A)j1)

(BoA)1(BoA)j, '

Putting these two contributions to the factor together, we find

Aijy(Aj1 +(Bo A)j1)(Aiz+ (Bo A)j2) ( 1 . 1 )

(BoA)j (BoA)1 (Bol)

and sincgB o A)1 + (B o 1), = 0, this is vanishing.

The main difference between the cages 2 andn = 3, is the following: in the first
situation, each contribution to the factor of the fictive resonance vanishes separately. In the
second situation, the two symmetric contributions kill each other. This is in fact a generic
feature: the fictive resonance disappears when one symmetrizes theﬁ%}bm its indices
Ji...Js. Thisis due to the way the Poinéeseries is written: a given monomigl® of orders

(lm| = s) appears as soon as the ordered sequence of indicesj, is a permutation of the

set of indices that contains, times 1,m, times 2,..,my timesN. Thus, to find the actual
coefficient ofy™, we have to sum the'°") over all the set of indiceg; . . . j that are such

1eeeJs
that

(23)

ej,te,t---te; =m

wheree;, is the unit vector in the directiog,.

From a theoretical point of view, this may seem of little interest (from a practical point of
view, however, this phenomenon has to be taken into account). The following remark shows
thatitis notthe case: inthe QM context, there is no fundamental difference between an analytic
system that contains a fictive resonance, and a system with a resonance, but whose normal
formis linear (this is the situation in which the relation (3) is satisfied becausétoth — 1;)
andF; (m) are vanishing). In the two situations, particular restrictions on the métrof the
LV system make the coefficient of the resonance vanish. So we can find conditions on the
parameters of the vector field such that a given resonance is not an obstacle to linearization.
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To specify the main idea a little more (but without entering details), let us consider a
resonance:
m-A=0 lm| =r.
This resonance can be written
hay ¥ hay +.oohg, =0,

with (aq, a2, ..., ) an ordered sequence such that:
(o1, @2, ..., @) € permutationof (1,...,1,2,...,2,...,N,...,N).
P N—
mi X maX my X

The resonance appears for the first time at the otderr, and the conditiorF; (m) = 0 in
(3) here becomes

Z Piotl...OtN X [)‘aN ()\aN,l + )‘aN) cee ()‘otz oot )LDtN)]_l =0
permis,...,on)
for all i. The sum has to be understood as the sum over all the different permutations of the
fixed indices(a1as . . . o).
Atthe higher orders, what happens depends on the degree of the resonance (i.e. the number
of free parameters im).

4. Generalized resonances

The method of this section is based on changes of variables that modify the linear part of the
vector field. Doing so, we will be able to write a generalized resonance condition. This is,
of course, impossible to do with the usual theory of normal forms, since such a change of
variables will in general make negative powers of the variables appear. In the QM context, this
can be allowed. However, we have to strongly reduce the class of transformations. Indeed, a
simple linear change of variable, for instance, will map a QM system that contains negative
or non-integer powers of the variables, onto a system that is no longer a QM system. We will
in fact use two kinds of transformation; let us introduce the first, the so-called QM changes of
variables. As we will show, these transformations have the property that they do not change
the resonant or non-resonant character of the vector field. These changes of variables are of
the form

N
Ci .
u,-:l_[xk‘ i=1...,N
k=1

whereC is an invertible squared matrix. This gives the new QM system

m N
u; = Mu; +u; Z Ajj 1_[ uf}k
j=1 k=1
with matricesA’, B’ and vectoi’” are given by
A'=CoA
B =BoC™!
MN=Col.

The productgB’ o A’) and(B’ o 1") are unchanged, hence the resonance condition is invariant.
The second kind of transformations that preserve the QM character of the system are
the new time transformations (NTT). In contrast with the former, these transformations will
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modify the resonance condition and yield a generalized condition on the niAtexA). A
NTT reads

N
dr = (Hx,’fk> dr’
k=1

where theg, are arbitrary reals, and whese is expressed in term of the new variable
Inserting it in the QM system, we find

dx; N “ N B+
—l=)»,-x,- H)Ckk +xiZA,-jl_[xk"k ﬁk.
dr’

k=1 j=1 k=1

The most important difference with a simple QM transformation and, in fact, the reason for
which the resonance condition will be modified, is that the action of a NTT mixes the linear
and the nonlinear terms. It is thus natural to modify the notation in order to include the linear
part in the matricegt andB. Let us rewrite the QM system (4)

dx[ m N By
E:XiZ:A[jU)Ck' . (24)
j=1 k=1
where the matribx3 is now
B]_l e B]_N
321 . BZN
B = : :
Bpu-p1 ... Bug—ywn
0 .. 0

The coefficients of the linear terms are here given by the last columnand, in general, by
thelth column ofA when all the elements of thith line of B are vanishing. With this notation,
the A; that enters the resonance condition (22) are given byithéor that fixed value of.
The NTT do not modifyA, but B becomes:

Buu+pgr ... By, + Bn
Ba1+B1 ... Bo, + By
Bou—p1+B1 ... Be—yn t+ By
B1 e Bn

In the general case, there is no vanishing line in this matrix, hence, no linear term in the new
system. But if we choosg, = — By, for all k and a fixed, then the'th line of the new matrix

B’ of expression (25) is vanishing. The new spectrum is givenby: Ay, (with the same
fixed/). The matrixB appearing in the resonance relation (22) is not the m&tri25). This

one has one line too much: the one corresponding to the linear terms, i.e. the line of zeros.
The resonance condition for the system after the NTT is thus:

N m
D> vi(Bj = Bi)Au =0

k=1 j=
j#

with 3", ;. v; > 1. Itcan also be written:
Z vi(BoA)j = |vl(BoA)y with v, =0 and |v|= Z v; > 0. (26)
j=1 j=1
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This condition is obviously more general than the condition (22), and clearly reduces to it for
a particular choice df.

Let us now try to make the meaning of (26) more precise. If there is at least onel/index
such that the condition (26) is never satisfied, then the system can be reduced to a non-resonant
system. Suppose we find suchiathen perform the NTT:

N
dr = dr’ (l_[ka’k>
k=1

wherex; denotes now, (¢'). Clearly, the system so obtained is not resonant (note that in this
mapping, an initially analytic system becomes non-analytic). We can thus use the QM-Boincar
transformation to linearize it. This will give

dy;

i Airyi. (27)
Let us now show the meaning of this for the original resonant system. We have the following
scheme of transformation:

P/
original resonant system)( =—> unknown systemrj

(NTT) | f+ (NTT)™?!

non-resonant system’Y = linear system«()
P

WhereNTT and(NTT)~! respectively denote the new time transformation and its inverse,
P is the generalized Poin@atransformation performed on the system obtained afET,
and P’ is given by

P'=(NTT)*oPoNTT.

The local character oP implies thatP and NTT commute, and thu®’ = P. This means
that we can perforn® directly on the original system. The unknown system of the scheme, is
then given by N T T)~* acting on the linear system, hence by

dy;

i Yidi f ().

The functionf (y) is just the quasi-monomi&[[,]g':l x,f’* expressed in terms of thevariables.

From a geometrical point of view, the phase space of this system is strictly the same as
the one of the system (27), since the NTT is just a reparametrization of time. Hence, we have
reached the goal of the usual normal form theory: sketch the phase-portrait of the system.
There is, however, a question that has no answer at this stage: the usual normal form approach
is local: it only concerns a neighbourhood of the fixed point under study. What about the NTT
approach?

In order to simplify the discussion, let us focus on the (homogeneous) LV embedding,
instead of the QM system. Then, if the system before the NTT reads

dxj ZN:M
— =X X
dr lj:l gy

(where, eventually, the entries of one of the lines of the maufixare all vanishing) the only
NTT that will preserve a linear part, reads

dr = dt’ x,t
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with [ integer between 1 and. With no loss of generality, we may chodse N. The system
then becomes

dx; ZN -1
F = X; MinjXN .
j=1

Let us now perform the LV embedding on this system: we have to add the variables
XN+ = x,-x;l.
fori < N. We then have
N—-1
% = M;nx; +x; Z M;ixy+;
j=1
for i varying from 1 toN, and

N-1
dx i

W - Xn+i (Miy — Myn) + Xn+i ;(Mij — Myj)xn+j
fori =1,..., N —1. We now have a new LV system on which we may perform the Pdincar

transformation (15). The structure of the matrix defined by this (@W — 1)-dimensional
system has the consequence that the only monomial appearing in the Bdianaformation,
are monomial of the variablesy.1, ...xoy_1. Hence, viewed as a transformation on the
original system, these monomials are monomlalé;m -1 - As a consequence of that,
the point of phase space around which the series is buﬂO;sO , 0, 00).

As claimed, we have thus obtained a method to approxmate the trajectories far from
the fixed point under study. Moreover, the NTT can be performed with the other variables,
providing each time a series that is valid in a different sector.

The situation is less clear for a QM system (or even for an analytic system), since the LV
system from which we started, is already an embedding of a previous system. This means that
the origin in the phase space of the LV system may already correspond to a point at infinity
for the QM system. In this context, no general considerations can be made, except that the
transformation can be, once again, explicitly written, using the formulae (20) and (19) with
different parameters; starting with the system (24), we have:

~(QM) /1k+B/zk+"'+B/sk—S'Blk

5=0 j1,00mrJs k_l

The second summation is taken over aII the indiges. ., j;, each of them running from 1 to

m, but without taking the valug ThePl]1 |, are:

pom _ Ain(Aijp ¥ Mjp) - (Aij + Mjyj + -+ Mjy0)
Lj1Js Mj.y/(M}fll + Mj.;l) . (Mjll +...+ Mj.\.l)

whereM,-j = Y, (Bix — By)Ay;. We can check that these expressions become (19) and (20)
whenB;, = 0forallk, andA, = A,.

We also have to specify that, when integrating the NTT relation, one may find a relation
betweernr’ and: such that’ becomes infinite for a finite

In order to illustrate the method, we will now treat an example.
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Figure 1. Phase portrait in théz1, ny) plane.

4.1. Example

Let us study the following two-dimensional system:

J:61 = x1+x1(—x1+ x2) (28)
X2 = —x2 + x2(x1 + x2)
which is already of the LV type. This system possess three fixed pai@i€)), (1, 0) and
(0,1). The phase portrait in the neighbourhood of the origin is drawn in figure 1. Moreover,
the fixed point under studyD, 0), is resonant.
The Poincag transformation can be obtained by using (15), letting all the undetermined
coefficients of (16) vanish. This gives, up to order three:

x1=y1(1— y1— y2 + yZ +y3) + 0"

x2 = y2(1+y1— y2+y3) + 0(y").
We now have to be careful in order to compute the normal form of the system. Indeed,
the inverse Poincarseries obtained by using (17) and (18) (again letting the undetermined
coefficients vanish) is not the inverse of the direct Poiadeainsformation obtained above.

We thus have to compute the inverse series by hand. This allows us to compute the normal
form system, which reads:

¥1= y1+2y%y2 + oy

V2 = —y2 +0(y").

Figure 2 is a plot of th€x1, xo) plane. As expected, the normal form approximation (in
grey) is close to the exact solution (in black) in the neighbourhoo®dd). Higher-order
approximations are expected to give better and better approximations. However, since the
Poincaé series usually has a finite radius of convergence, nothing good can be obtained
outside a certain neighbourhood of the origin. The calculation of the radius of convergence
of the Poincak series is not the object of this paper, thus we will not study this question here.
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Figure 2. Normal form trajectories (in grey) versus exact trajectories (in black) around the fixed
point.

-0J8 -

e

Figure 3. Comparison between the exact solutions (in black) and the normal form approximation
(in grey) around the pointo, 0).

Figure 3 shows the normal form approximation (in grey) in coordinates whictiLare, x2).
Clearly, the approximation fails.
Let us now change the time parametrization as follows:

dr = dr’ x;t.
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This gives the system

d
= o gt ar )
dr’
(29)
dxz -1, -1
W = xp + x(—x; " +xy "x2).
The LV embedding is obtained by adding the two following variables to this system:
X3 = x{l
X4 = x{lxz

with the use of which, we can write the four-dimensional LV system

Xy = —x1+x1(x3 + x4)

Xy = X + x2(—x3 + Xx4)

x5 = X3+ x3(—x3 — Xa)

xy = 2x4 + xa(—2x3)
where the notation;, x5, . .. denotes the derivative with respecttoThe system seems to be
resonant, butitis not the case, since the nonlinear terms are such that no coefficient is divergent
in the Poincak series (the system (29) is not resonant in the sense defined for the QM context).
In fact, the only variables that appear in the Poiacseries ares andz4, which are in fact
z7+ andz; 22, wherez; denote the new Poindavariables. The Poindasseries for the new
four-dimensional system reads

x1=z1(1+z3+ %14 - %zsu) + O(z4)

x2=2z2(l—z3+ %Z4 + z% + ézi — z3z4) + 0(zh

x3=z3(1 — 23+ 324 + 2§ + 325 + 4/32324) + 0(z")

x4 = 24(1 — 223 + 325 + 3zaz4) + 0(2%).
Using the expression af andz, in terms ofz; andz,, one gets for; andx;

1 2z 72 722
x1=Zl<1+—+———2 +0 —
21 2Z1 3Z1 21

1z 1 2 2z 722
x2=z2(1——+—+—2+ 22__2 ol — |-
21 2Z1 21 8Z1 21 21

It is clear that the terms that we neglected above are important whgats close to zero.
Hence, the approximation fails there. However, fgrclose to zero and; close toco, the
approximation is good. Figure 4 shows, in tig¢x1, x2) plane, the exact solution (in black)
versus the above approximation (in grey). This is to be compared to the normal form result in
the same domain (figure 3).

Systems with two quasi monomials

We now focus on exact properties related to generalized resonances (GR).

With the GR relation, we can show that a system that contains two monomials can either
be brought to a non-resonant system or is simply integrable. For such systéastwo lines
andA two columns, hencéB o A) is a(2 x 2) square matrix.

If only one (among the two possible) GR condition is satisfied, the system can be written
as a non-resonant system. Otherwise, the two GR conditions are simultaneously satisfied. Let
us write the GR condition far= 1:

v2(B o A)p1 = v2(B o A)1x
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Figure 4. Comparison between the exct solutions (in black) and the normal form approximation
obtained after new time transformation (in grey) around the pgent0).

with a non-vanishing,. So we havéB o A),1 = (B o A)11. The GR relation fof = 2 gives
(B o A)12 = (B o A)zp. The matrix(B o A) of the LV system is degenerated, and it reduces
to one equation.

Non-resonant perturbations

We now show that a system such that all its GR conditions are satisfied can always be modified
by adding one monomial to each equation, in such a way that it becomes reducible as shown
above (i.e. to a system with one monomial).
Consider theV-dimensional QM system, witlh monomials and such that there exists,
for any index! between 1 andh, a vectorv of integers that are positive or vanishing (with
v; = 0 for some/, and|v| > 1), and satisfying
m
D wi(BoA); = |v|(BoA)y.
j=1

Now let us add a monomial that could be a perturbation to the system, with free coefficients
and exponents:

m n B n
).Cl'le' E Aijl_[xk’k+x,-ail_[xkk
j=1 k=1 k=1

and try to find values of the; and theg; in such a way that a GR condition is never satisfied
for this system. ) )
The new QM matricest and B read, in terms of the matrice$ and B of the original
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system:
A1y A ... Ay a1
. A21 A22 e Azm o2
A=
Anl AnZ cee Anm oy
and:
Bi1 By ... By,
B Bz ... By
B=| ¢ :
Bml Bm2 e an
ﬁl ,82 o ﬂn

The product(B o A) is

. o ((BoA)™M (Boa)mD
(B o A) - < (IB OA)(lxm) (:3 Oa)(lxl) ) .

Hence, the GR conditions are the following; first fdretween 1 ane:, we have

m

D (B o A)ji+ vy (B o ) = [v|(B o A)y.
j=1
Now v is a vector with(m + 1) components. If we choose, for thefirst components of,

the vector that satisfied the GR condition for the initial system, we are left with

Vim+1) (B 0 B)1 = vgn+y (B o A)y

which is satisfied fop,,+1 = 0, a choice which is compatible with the restrictions on the vector
v. Thus, for then first columns of(B o A), it is not possible to fulfil the requirement that the
system is not resonant.
Now let us look at the last column 68 o A); we have

m

Y viBow); =wl(Boa)

j=1
or:

m n
Z v; |: Z(Bjk - ,Bk)Otk:| =0.
j=1 k=1

If we now chooses, > |Bj«| (here| - | denotes the absolute value) for gliand allk, and

ar > 0 for all &, the relation will never be satisfied with an acceptablélence the system is
linearizable. Note that we can choage= ¢ andg, = 8, with g as large as we want, ard

as small as we want, as in the case of a perturbation: such a perturbation would make a system
integrable which originally was not.

5. Conclusions

In this paper, we presented new developments, among which the most interesting one is,
without doubt, the generalization of resonances. Even if the generalization of linearizing
transformations to more general mappings than simple Taylor series has been envisaged [15],
to the best of our knowledge, the reduction scheme of a system to something else than its linear
partis completely new. This new type of reduction opens interesting perspectives in the theory
of integrability, and in the construction of invariants manifolds.
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The explicit form of the generalized Poinéaseries can be used to build computer algebra
algorithms. This will be the subject of a further publication, in which we will develop a
graphical tree method to perform resummations of the series. This formalism can also be used
to optimize the recursion relations used to calculate the coefficients. The trees also permit one
to unify the Taylor series in powers of the time, the Poiécaries and another series previously
discussed in [3], which is a regular perturbation series. Numerical examples already indicate
that the resummations of the series permit to reach a given accuracy with less calculations
than in usual numerical integration methods. Furthermore, for regular perturbation series, it
generates results close to singular perturbation methods.
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