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Structure of normal form series for non-analytical vector
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Brussels, Belgium
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Abstract. This paper is devoted to the study of normal form transformations and resonances.
The usual theory of normal forms is formulated in a more general context: the quasi-monomial
formalism, in which negative and non-integer exponents are accepted. The general coefficient of
the Poincaŕe series is explicitly constructed in the non-resonant case, for any QM system. From
there arises the necessity to generalize resonances to non-analytical vector fields. Using particular
changes of parameterization, we extend this resonance relation to the nonlinear part of the vector
field. The changes of variables that arise from this provide approximations of the solutions far from
the fixed point.

1. Introduction

The Poincaŕe–Dulac normal form approach for solving nonlinear systems of ODEs is among
the most interesting methods in computer algebra. However, the iteration of the existing
algorithms [1] leads to extremely heavy calculations that cannot be performed by hand. Even
using computer algebra languages, the construction of the Poincaré series appeared to be
very difficult, since, among other problems, the general structure of the coefficient was still
unknown. This question has been recently solved, independently by Ecalle [2], and by the
present authors [3].

This paper is not only an extended version of [3]. It also contains new results: in section 4,
using particular changes of time parametrization, we find criteria (the generalized resonance
conditions) for the system to be conjugated to a system that is linear. The transformation
leading to this simplified (integrable) system is close to the Poincaré transformation, and can
thus also be explicitly constructed.

Hereafter, we introduce the usual notion of normal form and recall the principle of
resonance. We also give a short introduction to the quasi-monomial (QM) notation that will
be used throughout this paper.

† E-mail address:slouies@ulb.ac.be
‡ E-mail address:lbrenig@ulb.ac.be

0305-4470/99/213959+20$19.50 © 1999 IOP Publishing Ltd 3959



3960 S Louies and L Brenig

1.1. Normal forms

In a general context, normal form theory [4–6] applies to analytical systems of ODEs. Consider
the following system:

ẋi = λixi +
∑
m
|m|>2

ai(m)x
m (i = 1, . . . , N) (1)

where the dot denotes the derivative with respect to the independent variable (say the timet

for instance), and where we used a multi-index notation:

m = (m1, m2, . . . , mN)

xm = xm1
1 x

m2
2 . . . x

mN
N

and |m| = m1 +m2 + · · · +mN.
Themi are positive integer numbers (since the system is analytic), and the origin is a fixed
point. The condition|m| > 2 ensures that

∑
ai(m)x

m is purely nonlinear.
The principle of normal form theory is to find an analytical change of coordinates, with

the origin as a fixed point, such that the vector field becomes simpler to study in terms of
the new variables, i.e. we try to find variables for which the system is linear, or at least, to
remove some inessential part of the nonlinearity. Doing so the system of nonlinear ODEs is
reduced to a system of linear PDEs: the homological equations for the transformation. If we
find the linearizing change of variables, it means that the phase portrait around the origin is
topologically equivalent to the phase portrait of a linear system; in other words: the nonlinearity
does not affect the qualitative behaviour of the system.

Practically, let us expand the change of variables in Taylor series:

xi = yi +
∑
m
|m|>1

bi(m)y
m

where we assume analyticity of the mapping and its proximity to the identity. Using this in
(1), gives a new system

ẏi = λiyi +
∑
m
|m|>1

ci(m)y
m (2)

where the linear part is unchanged. Now let us try to fix the coefficientsbi(m) in order to
remove monomials in this new system. Doing this, we have to solve, order by order, the
hierarchy of algebraic equations:

(m · λ− λi)bi(m) = Fi(m) (3)

where(m · λ) stands for
∑N

k=1mkλk, and theFi(m) are some functions of theλj , and of the
ai(p) andbi(p) (with pi 6 mi , and|p| < |m|). In general, the recursion (3) cannot be solved
explicitly in compact form: it has to be studied order by order. It can at least be formally solved
provided that there is no vanishing factor(m ·λ−λi); otherwise, in general, the corresponding
equation cannot be solved. The relation

m · λ− λi = 0

is called aresonance condition. When a resonance condition is satisfied, the new system still
contains nonlinear monomials; these are calledresonant monomials. In the non-resonant case,
the change of variable is also an expression of the solution as a series of exponentials of the
independent variablet , since the new equations are simply linear. It can happen that some
(m · λ − λi) and simultaneously the correspondingFi(m) are vanishing. In this case, the
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coefficientsbi(m) are free (and are usually chosen equal to zero). Thus, the best we can do is
to find new coordinates for which the coefficients of (2) satisfy

ci(m) = 0 if m · λ− λi 6= 0.

The system (2) is then called thenormal formof the system (1). The transformation leading to
it is thePoincaŕe transformation. The normal form system can be reduced further [6, 7] (i.e.
some resonant monomials can be removed) by a judicious choice of the coefficientsbi(m) of
the resonant monomials in the Poincaré series. However, the system will still contain nonlinear
terms.

An important question is: when is the Poincaré series convergent? From the relation (3),
we see that

bi(m) ∼ (m · λ− λi)−1

and, even if no resonance condition is satisfied, the quantity(m · λ− λi) may become close
to zero asm increases; the correspondingbi(m) will become large, and this can cause the
divergence of the Poincaré series.

All we can do is to find conditions on the spectrumλ, such that the Poincaré series is
convergent, no matter what the nonlinearity is. These conditions are thus sufficient but not
necessary conditions. The less restrictive known condition is Bruno’s diophantine condition [6]
(equivalent to a condition found by Rüssman [16] for diffeomorphisms): let us define

ω(k) = inf (|m · λ− λi |) with k = |m|.
Then the Poincaré series is convergent if∑

k>1

1

2k
log

(
1

ω(2k)

)
<∞.

Note that the convergence domain of the Poincaré series is a neighbourhood of the origin
in phase space, i.e. a certain domain around zero for the variablesyi . This means that the
convergence depends on the initial conditionsyi(0), that are themselves functions of the initial
conditionsxi(0) (via the inverse of the Poincaré transformation). The choice of a set of initial
conditions [xi(0)] selects a trajectory in phase space. The Poincaré series converges during
the time interval for which this trajectory crosses the neighbourhood of the origin. Hence, this
time interval may not exist if the series diverges.

The convergence theorem can also be applied to resonant systems: the coefficients for the
resonant monomials are then left free, and only the non-vanishing(m ·λ− λi)) are taken into
account in the definition ofω(k).

1.2. The QM formalism

The QM formalism [8–10] characterizes the system by two real or complex rectangular constant
matrices. Their dimension depends on the nonlinearity of the system, and can be infinite.

QM differential systems are systems that can be written as

ẋi = αixi + xi
m∑
j=1

Aij

N∏
k=1

x
Bjk
k (i = 1, . . . , N) (4)

wherem is arbitrary. TheAij and theBjk are thus real or complex constants; this class is quite
general, since (4) contains most of the systems of interest in physics, biology, chemistry,. . . .

Now consider the embedding of system (4), obtained by adding to it them following
variables:

xN+j =
N∏
k=1

x
Bjk
k (j = 1, . . . , m).
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Taking the time derivative of these new variables, we find the(N +m)-dimensional system:

ẋi = λixi + xi
N+m∑
p=1

Mipxp

which is of the form of the Lotka–Volterra (LV) system [11, 12]. These systems were first
introduced to study the time evolution of interacting species. They appeared to have rich
dynamical properties, and to show complex behaviours, like limit-cycles and even chaotic
attractors. Even more: they seem to be the simplest form for a system of ODEs still showing
this complex behaviour, since any further simplification (for example: the case of a degenerated
matrixM) implies the integrability of the system.

In the above LV equations,i runs from 1 toN +m. Theλi and the (square) matrixM are
given by:

λi = (α1, . . . , αN, (B ◦ λ)1, . . . , (B ◦ λ)m)T

M =
(

0(n×n) A(n×m)

0(m×n) (B ◦ A)(m×m)
)

(5)

where(B ◦ λ)i =
∑N

k=1Bikλk, and(B ◦ A)ij =
∑N

k=1BikAkj . In expression (5), the upper
index gives the dimension of the matrices. The entries of 0(n×n) are all vanishing. Note that
this LV system contains a closed subsystem, composed of the lastm variables (the QMs).
This subsystem contains all the information about the dynamics of the QM system. If, for
instance,N < m, then it is possible to show that the QM system has first integrals that permits
one to reduce its dimension fromN to m. The use of the larger(N + m)-dimensional LV
system is more natural, and practically, we do not have to worry about the inverse of the QM
transformation [8,9]: the original variables are just the firstN variables of the LV system.

By adding one more variable to the system, which is set equal to one:

ẋ(N+m+1) = 0 x(N+m+1)(t = t0) = 1

we can include the linear part in the matrixM:

ẋi = xi
N+m+1∑
j=1

Ḿij xj (6)

with:

Ḿ =


M11 M12 . . . M1(n+m) λ1

M21 M22 . . . M2(n+m) λ2
...

. . .
...

...

M(n+m)1 M(n+m)2 . . . M(n+m)(n+m) λ(n+m)

0 0 . . . 0 0

 .

2. Structure of the Poincaŕe transformation

Since we know that any QM system can be brought to the canonical LV form, we now focus
on constructing the Poincaré series for LV systems (the generalization to QM system will be
straightforward):

ẋi = λixi + xi
N∑
i=1

Mijxj (i = 1, . . . , N) (7)

where the linear part is explicitly written. It has been known, since the work of Carleman
[13,14], that a nonlinear system can be viewed as an infinite-dimensional linear system. This
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can be realized by considering as new variables all the monomials one can build with products
of positive integer powers of thexi . Using the multi-index notation:

Xm = xm1
1 x

m2
2 . . . x

mN
N

and derivating these new variables, we find:

Ẋm = (m · λ)Xm +
N∑
p=1

( N∑
l=1

mlMlp

)
X(m+ep). (8)

whereep is a unit vector: (ep)s = δp,s , andXm+ep is Xm1,...,mp+1,...,mN . This infinite-
dimensional linear system (8) is characterized by a triangular matrixR, which is given by

Rmp = (m · λ)δm,p +
N∑
k=1

N∑
l=1

mkMklδ(m+el ),p. (9)

For an original system (7) that would be linear (i.e. the matrixM vanishes) system (8) would
be purely diagonal. This implies that the Poincaré transformation on (7), for non-vanishing
matrixM, but in absence of any resonance, corresponds to the diagonalization of the infinite-
dimensional matrix defined by system (8),Rmp.

Consider now the operatorL defined by the relation

Lmp = δm,p +

∑
k Rmk(1− δm,k)Lkp

R pp
− Rmm + δm,p (10)

where, once again, the indices are multiple (the sum overk is a multi-sum over theN indices
ki running from 0 to∞, andδm,p stands forδm1,p1 . . . δmN ,pN ).

If Rmp is triangular (that is:Rmp = 0 if there exists at least one integerk between 1 and
N , such thatmk > pk) and ifRmm 6= Rpp (that ism ·λ 6= p ·λ) for allm 6= p, then relation
(10) definesLmp without ambiguity. Indeed, the denominator never vanishes, and, for any
finitem andp, Lmp is given by a finite sum of terms. The conditionRmm 6= Rpp form 6= p
implies that the relationr · λ = 0, wherer is a vector of positive or vanishing integers, is
satisfied only ifrk = 0 for all k and restricts system (7) to the non-resonant case: it is easy to
see that resonances of the kindr ·λ = λi with ri = 0 has no implication on the Poincaré series
for a LV system, and more generally, for differential systems of the formẋi = λix1 + xifi(x)
with fi analytic.

Given these conditions, we claim thatL diagonalizesR. More precisely, in our case this
means that, considering the inverse operatorL−1 defined by∑

k

L−1
mkLkp =

∑
k

LmkL
−1
kp = δm,p (11)

we have: ∑
k,o

L−1
mkRkoLop = Rmpδm,p. (12)

The question of the existence of the inverse operatorL−1 is obvious. This operator represents
the inverse of the Poincaré transformation. The latter is a diffeomorphism. Hence, when it
exists, so does its inverse. The analogue of the relation (10) forL−1 is

L−1
mp = δm,p −

∑
k L
−1
mkRkp(1− δk,p)

Rpp − Rmm + δm,p
. (13)

Let us now prove the proposition for the relation (10) (the demonstration for (13) goes along
the same lines): multiplying both sides of (10) by(Rpp − Rmm + δm,p) one finds∑

k

RmkLkp = LmpRpp + δm,p(Lmp − 1)− δm,p(Rpp − Rmm). (14)
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We now show that the last two terms of (14) are vanishing. It is clearly the case for
δm,p(Rpp − Rmm). For δm,p(Lmp − 1) we demonstrate that, thanks to the fact thatRmp
is triangular, so isLmp, and all the elementsLmm are equal to one. To show this, consider
the series obtained by iterating (10). This will be a series of powers ofRmp(1− δm,p) (with
coefficients depending onm andp). Now, the elements of thekth power ofRmp(1− δm,p)
for whichpi 6 mi + k are all equal to zero. This implies that the only contribution toLmm
comes from the first term of the series, that isδm,p. So,Lmm = 1, andδm,p(Lmp − 1) = 0.
Then multiplying (14) byL−1

om and summing overm, we find the announced result.
Taking this result back to the original LV system, we can build the Poincaré series for

it. We insert the matrix (9) in (10) and, writing (10) form = ei , we find after some simple
algebra:

xi = yi
∞∑
n=0

N∑
i1,i2,...,in=1

Pii1i2...inyi1yi2 . . . yin (15)

wherei = 1, . . . , N and with tensorsP given by:

Pii1i2...in =
Mii1(Mii2 +Mi1i2) . . . (Miin +Mi1in + · · · +Min−1in )

λin(λin−1 + λin) . . . (λi1 + · · · + λin)
. (16)

The term corresponding ton = 0 is, by convention, set equal to 1.
The relation (13) can be used to compute the inverse of the Poincaré transformation:

yi = xi
∞∑
n=0

(−1)n
N∑

i1,i2,...,in=1

Iii1i2...inxi1xi2 . . . xin (17)

with

Iii1i2...in =
Mii1(Mii2 +Mi1i2) . . . (Miin +Mi1in + · · · +Min−1in )

λi1(λi1 + λ2) . . . (λi1 + · · · + λin)
. (18)

Note that the dependence on the matrixM is exactly the same as for the direct Poincaré
transformation; the only difference is the order of the indices of theλi in the denominator.

Using the QM formalism, we can now build the analogues of the Poincaré transformation
for a general QM system. We merely have to put theM given in (5), and to write (15) for the
variables of the QM system. This gives

xi = yi
∞∑
s=0

m∑
j1,...,js=1

P
(QM)
ij1...js

( N∏
k1=1

y
Bj1k1
k1

)
. . .

( N∏
ks=1

y
Bjs ks
ks

)

= yi
∞∑
s=0

m∑
j1,...,js=1

P
(QM)
ij1...js

N∏
k=1

y
Bj1k+Bj2k+···+Bjnk
k . (19)

Now,P (QM)ij1...js
is given by:

Aij1(Aij2 + (B ◦ A)j1j2) . . . (Aijs + (B ◦ A)j1js + · · · + (B ◦ A)j(s−1)js )

(B ◦ λ)js ((B ◦ λ)j(s−1) + (B ◦ λ)js ) . . . ((B ◦ λ)j1 + · · · + (B ◦ λ)js )
. (20)

The simple form of the LV system also allows to write explicitly the hierarchy (3), even for a
resonant system; one has to substitute in the LV system the series

xi = yi
∑
m
|m|>0

bi(m)y
m.

The time derivatives of they variables are

ẏi = λiyi + yi
∑
m
|m|>0

ci(m)y
m.
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One then gets∑
r,m

ci(r)bi(m) y
r+m +

∑
r

(r · λ)bi(r) yr +
∑
r,m

N∑
j=1

bi(r)(r · c(m)) yr+m

=
N∑
j=1

Mij

∑
r,m

bi(m)bj (r)y
r+m+ej .

This equation implies the following infinite set of equations:

(r · λ)bi(m) =
N∑
j=1

Mij

∑
m1+m2=r−ej

bi(m1)bj (m2)

−
∑

m1+m2=r
bi(m1)[ci(m2) + (m1 · c(m2))]. (21)

In the resonant case, theci(m) can be chosen equal to zero as far as no resonance is encountered.
When the lowest-order resonance occurs, say forr = r0 with |r0| = n0, the left-hand side of
the equation is vanishing. One then gets the equation

ci(r0) =
N∑
j=1

Mij

∑
m1+m2=r0−ej

bi(m1)bj (m2).

In the non-resonant case, one has:

(r · λ)bi(m) =
N∑
j=1

Mij

∑
m1+m2=r−ej

bi(m1)bj (m2)

which is almost the same expression as the previous one for the normal form coefficient.
Comparing this to the result obtained via the Carleman embedding, we are able to write

Ci(r0) =
∑

ei1+···+ein0
=r0

Mii1(Mii2 +Mi1i2) . . . (Miin0
+ · · · +Min0−1in0

)

λin0
(λin0−1 + λin0

) . . . (λi1 + · · · + λin0−1)

which in fact reduces to

Ci(r0) =
∑

ei1+···+ein0
=r0

Mii1Mi1i2(Mi1i3 +Mi2i3) . . . (Mi1in0
+ · · · +Min0−1in0

)

λin0
(λin0−1 + λin0

) . . . (λi1 + · · · + λin0−1)

The above results give compact expressions for the coefficients of the Poincaré series. They
are, however, not easily found from the hierarchy (21), even in the non-resonant case, because
it does not give the tensorsPij1...js as they are given in (16), but their symmetrized form, which
are much longer to write. Furthermore, the similarity in the structure of these coefficients with
the coefficients of the Taylor series obtained in [8] is striking.

3. Resonances in the QM context

The results presented in the previous sections were already briefly presented in [3]. We now
present new developments about the linearizability character of non-analytical vector fields.

We thus derived the general structure of the Taylor and the Poincaré series for LV systems,
and we showed that the QM formalism permits one to extend these results to any QM system.
Consequently, it is necessary to extend the usual notion of resonance to systems that are not
especially analytic. We do this by associating a resonance with a vanishing factor in the
denominator of a coefficient (20). Restricting ourselves to analytic systems, we show that
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vanishing denominators may appear even in the non-resonant case [2]. These resonances are
called fictive resonances. They have no consequence, due to the analytical character of the
vector field. Indeed, the factor that multiplies the fictive resonance is always vanishing. The
extension of this notion to the more general QM context is straightforward, and, in fact, gives
the conditions under which the resonant monomials do not appear in the normal form system.

3.1. Resonance

In the QM context, the usual resonance relation has to be modified in order to include all
possible vanishing denominator in (20). This generalized resonance condition is:

m∑
j=1

vj

n∑
k=1

Bjkλk = v ·B · λ = 0 (22)

with vj a positive or vanishing integer (and|v| > 1).
Let us precise that the resonance of an analytic system does not imply necessarily that

there exists av satisfying (22). To show this, let us consider an example of analytic resonant
system:

ẋ1 = −x1 + αx2
1x

2
2 + βx1x2

ẋ2 = x2 + γ x1x
3
2 + δx3

2.

This system is clearly resonant:v · λ = 0 for v = (v, v). The QM matrices, and the vectorλ
are

B =
( 1 2

0 1
0 2

)
A =

(
α β 0
γ 0 δ

)
and λ =

(−1
1

)
.

Hence,

B ◦ λ =
( 1

1
2

)
and relation (22) is never satisfied.

When a situation like this arises, it means that the relation (3) corresponding to the
resonance is trivially satisfied (it reduces to ‘0= 0’, that is (m · λ − λi) andFi(m) are
vanishing in the same time). The resonance is compatible with the nonlinearity, in the sense
that it is not an obstacle to the linearization (the corresponding coefficient of the Poincaré
series is undetermined, and does not affect the coefficient of the lowest order monomials of the
normal form system). On the other hand, we may also have a situation in which a relation (22)
is satisfied, with a normal form system that is still linear. This will be discussed in the next
section.

3.2. Fictive resonances

We start with a QM system:

ẋi = λixi + xi
m∑
j=1

Aij

N∏
k=1

x
Bjk
k

and we suppose it is analytic. This implies conditions on the matricesA andB: each monomial
(including the factorxi) has to be composed of integer positive powers of the variables. So,
for a fixed indexj between 1 andm, Bjk is a positive or vanishing integer number, except for
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one indexk (between 1 andN ), for which we can haveBjk = −1; in this case (i.e., forj
andk such thatBjk = −1) we have the condition onA: Aij (with the samej than inBjk) is
vanishing for every indexi 6= k. We also impose the condition that

∑N
k=1Bjk > 1, in such a

way that the linear part of the system is limited to the termsλixi .
In what follows, we consider that this system is not resonant, i.e. there is noN -dimensional

vectorv, with integer positive (or vanishing) componentsvk such that

v · λ =
N∑
k=1

vkλk = 0 or λi.

In this case, the general theory of normal form, introduced in the beginning of this paper, tell
us that the system can be (at least formally) linearized, and that there will be no vanishing
denominator in the Poincaré transformation. If we simply write the series (19), we obtain the
Poincaŕe series for the QM system; but this time, it really is the Poincaré transformation
since the system is analytic. Moreover, the absence of any resonance lets us think that
no vanishing denominator will be encountered in the calculation. However, if one naively
calculates the Poincaré series (19), one may still find vanishing denominators: these are called
fictive resonances. When looking more carefully, one observes the following: the numerators
corresponding to fictive resonances are vanishing too. Moreover, the corresponding monomials
contain negative powers of the variables, and are thus not considered at all in the usual approach
(i.e. using the recursion (21)). Let us now show this more explicitly.

A fictive resonance corresponds to a vanishing sum of(B◦λ)j . Let this particular vanishing
combination be

0= (B ◦ λ)j1 + (B ◦ λ)j2 + · · · + (B ◦ λ)js = v · λ.
In order to respect the non-resonant character of the original equations, the vector of integers
v has to contain either one component which is smaller than or equal to−2, or at least two
components equal to−1. In other words,the sum of all the negative components ofv has to
be smaller than or equal to−2.

The first consequence of this is, as announced, that the corresponding monomial contains
negative powers of the variables. It is given by( N∏

k1=1

y
Bj1k1
k1

)
. . .

( N∏
ks=1

y
Bjs ks
ks

)
=

N∏
k=1

y
Bj1k+Bj2k+···+Bjs k
k =

N∏
k=1

y
vk
k

and even with the factoryi which multiplies this monomial in series (19), there will still be
some variables with negative exponents.

If we push this analysis further we have to look at the consequences of the presence of a
fictive resonance on the corresponding numerator. To do this, let us first treat a particular case,
and consider a fictive resonance of the form

0= (B ◦ λ)1 + (B ◦ λ)2 = v · λ
with v1 = v2 = −1 andvk > −1 for k 6= 1, 2. We can choose, without loss of generality,
B11 = B22 = −1, andB12 = B21 = 0. This fictive resonance will appear, for the first time, in
the term corresponding tos = 2 in expressions (19) and (20):

yi

m∑
j1,j2=1

Aij1(Aij2 + (B ◦ A)j1j2)

(B ◦ λ)j2[(B ◦ λ)j1 + (B ◦ λ)j2]

N∏
k=1

y
Bj1k+Bj2k
k1

when, eitherj1 = 1 andj2 = 2, or j1 = 2 andj2 = 1. In the first case, we have as the
numerator

Ai1(Ai2 + (B ◦ A)12) = Ai1Ai2 +Ai1(B ◦ A)12.
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We know thatAi1 is vanishing, except fori = 1; we also know thatAi2 = 0, except fori = 2.
So, the productsAi1Ai2 is always vanishing, whateveri is. Moreover,(B ◦ A)12 is

N∑
k=1

B1kAk2 = B12A22 = 0

(the first equality is a consequence ofAk2 ∼ δk,2, the second is due toB12 = 0) and so the
whole numerator is vanishing. The same holds forj1 = 2, j2 = 1.

Let us now take a look at the next order (s = 3 in (19) and (20)); the coefficient is:

Aij1(Aij2 + (B ◦ A)j1j2)(Aij3 + (B ◦ A)j1j3 + (B ◦ A)j2j3)

(B ◦ λ)j3[(B ◦ λ)j2 + (B ◦ λ)j3][(B ◦ λ)j1 + (B ◦ λ)j2 + (B ◦ λ)j3]
. (23)

Problems will arise either whenj2 = 1 andj3 = 2, or whenj2 = 2 andj3 = 1. In the first
situation, the factor of the fictive resonance is

Aij1(Ai1 + (B ◦ A)j11)(Ai2 + (B ◦ A)j12)

(B ◦ λ)2(B ◦ λ)j1

.

where we took into account the fact that(B ◦ A)12 = 0. If, for example,i = 1, we have

A1j1(A11 + (B ◦ A)j11)(B ◦ A)j12

(B ◦ λ)2(B ◦ λ)j1

and this quantity is not vanishing, so we have to take into account the symmetric contribution
corresponding toj2 = 2 andj3 = 1 in (23):

Aij1(Ai2 + (B ◦ A)j12)(Ai1 + (B ◦ A)j11)

(B ◦ λ)1(B ◦ λ)j1

.

Putting these two contributions to the factor together, we find

Aij1(Ai1 + (B ◦ A)j11)(Ai2 + (B ◦ A)j12)

(B ◦ λ)j1

(
1

(B ◦ λ)1 +
1

(B ◦ λ)2

)
and since(B ◦ λ)1 + (B ◦ λ)2 = 0, this is vanishing.

The main difference between the casesn = 2 andn = 3, is the following: in the first
situation, each contribution to the factor of the fictive resonance vanishes separately. In the
second situation, the two symmetric contributions kill each other. This is in fact a generic
feature: the fictive resonance disappears when one symmetrizes the tensorP

(QM)
ij1...js

in its indices
j1 . . . js . This is due to the way the Poincaré series is written: a given monomialym of orders
(|m| = s) appears as soon as the ordered sequence of indicesj1 . . . js is a permutation of the
set of indices that containsm1 times 1,m2 times 2,. . . ,mN timesN . Thus, to find the actual
coefficient ofym, we have to sum theP (QM)ij1...js

over all the set of indicesj1 . . . js that are such
that

ej1 + ej2 + · · · + ejs =m
whereejα is the unit vector in the directionjα.

From a theoretical point of view, this may seem of little interest (from a practical point of
view, however, this phenomenon has to be taken into account). The following remark shows
that it is not the case: in the QM context, there is no fundamental difference between an analytic
system that contains a fictive resonance, and a system with a resonance, but whose normal
form is linear (this is the situation in which the relation (3) is satisfied because both(m·λ−λi)
andFi(m) are vanishing). In the two situations, particular restrictions on the matrixM of the
LV system make the coefficient of the resonance vanish. So we can find conditions on the
parameters of the vector field such that a given resonance is not an obstacle to linearization.
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To specify the main idea a little more (but without entering details), let us consider a
resonance:

m · λ = 0 |m| = r.
This resonance can be written

λα1 + λα2 + . . . λαr = 0,

with (α1, α2, . . . , αr) an ordered sequence such that:

(α1, α2, . . . , αr) ∈ permutation of (1, . . . ,1︸ ︷︷ ︸
m1×

, 2, . . . ,2︸ ︷︷ ︸
m2×

, . . . , N, . . . , N︸ ︷︷ ︸
mN×

).

The resonance appears for the first time at the ordern = r, and the conditionFi(m) = 0 in
(3) here becomes∑

perm(α1,...,αN )

Piα1...αN × [λαN (λαN−1 + λαN ) . . . (λα2 + · · · + λαN )]−1 = 0

for all i. The sum has to be understood as the sum over all the different permutations of the
fixed indices(α1α2 . . . αr).

At the higher orders, what happens depends on the degree of the resonance (i.e. the number
of free parameters inm).

4. Generalized resonances

The method of this section is based on changes of variables that modify the linear part of the
vector field. Doing so, we will be able to write a generalized resonance condition. This is,
of course, impossible to do with the usual theory of normal forms, since such a change of
variables will in general make negative powers of the variables appear. In the QM context, this
can be allowed. However, we have to strongly reduce the class of transformations. Indeed, a
simple linear change of variable, for instance, will map a QM system that contains negative
or non-integer powers of the variables, onto a system that is no longer a QM system. We will
in fact use two kinds of transformation; let us introduce the first, the so-called QM changes of
variables. As we will show, these transformations have the property that they do not change
the resonant or non-resonant character of the vector field. These changes of variables are of
the form

ui =
N∏
k=1

x
Cik
k i = 1, . . . , N

whereC is an invertible squared matrix. This gives the new QM system

u̇i = λ′iui + ui
m∑
j=1

A′ij
N∏
k=1

u
B ′jk
k

with matricesA′, B ′ and vectorλ′ are given by

A′ = C ◦ A
B ′ = B ◦ C−1

λ′ = C ◦ λ.
The products(B ′ ◦A′) and(B ′ ◦λ′) are unchanged, hence the resonance condition is invariant.

The second kind of transformations that preserve the QM character of the system are
the new time transformations (NTT). In contrast with the former, these transformations will
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modify the resonance condition and yield a generalized condition on the matrix(B ◦ A). A
NTT reads

dt =
( N∏
k=1

x
βk
k

)
dt ′

where theβk are arbitrary reals, and wherexi is expressed in term of the new variablet ′.
Inserting it in the QM system, we find

dxi
dt ′
= λixi

( N∏
k=1

x
βk
k

)
+ xi

m∑
j=1

Aij

N∏
k=1

x
Bjk+βk
k .

The most important difference with a simple QM transformation and, in fact, the reason for
which the resonance condition will be modified, is that the action of a NTT mixes the linear
and the nonlinear terms. It is thus natural to modify the notation in order to include the linear
part in the matricesA andB. Let us rewrite the QM system (4)

dxi
dt
= xi

m∑
j=1

Aij

N∏
k=1

x
Bjk
k . (24)

where the matrixB is now

B =


B11 . . . B1N

B21 . . . B2N
...

...

B(m−1)1 . . . B(m−1)N

0 . . . 0

 .
The coefficients of the linear terms are here given by the last column ofA, and, in general, by
thelth column ofAwhen all the elements of thelth line ofB are vanishing. With this notation,
theλi that enters the resonance condition (22) are given by theAil for that fixed value ofl.
The NTT do not modifyA, butB becomes:

B ′ =


B11 + β1 . . . B1n + βN
B21 + β1 . . . B2n + βN

...
...

B(m−1)1 + β1 . . . B(m−1)N + βN
β1 . . . βN

 . (25)

In the general case, there is no vanishing line in this matrix, hence, no linear term in the new
system. But if we chooseβk = −Blk for all k and a fixedl, then thelth line of the new matrix
B ′ of expression (25) is vanishing. The new spectrum is given byλk = Akl (with the same
fixed l). The matrixB appearing in the resonance relation (22) is not the matrixB ′ (25). This
one has one line too much: the one corresponding to the linear terms, i.e. the line of zeros.
The resonance condition for the system after the NTT is thus:

N∑
k=1

m∑
j=1
j 6=l

vj (Bjk − Blk)Akl = 0

with
∑m

j=1,j 6=l vj > 1. It can also be written:

m∑
j=1

vj (B ◦ A)jl = |v|(B ◦ A)ll with vl = 0 and |v| =
m∑
j=1

vj > 0. (26)
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This condition is obviously more general than the condition (22), and clearly reduces to it for
a particular choice ofl.

Let us now try to make the meaning of (26) more precise. If there is at least one indexl

such that the condition (26) is never satisfied, then the system can be reduced to a non-resonant
system. Suppose we find such anl, then perform the NTT:

dt = dt ′
( N∏
k=1

x
−Blk
k

)
wherexk denotes nowxk(t ′). Clearly, the system so obtained is not resonant (note that in this
mapping, an initially analytic system becomes non-analytic). We can thus use the QM-Poincaré
transformation to linearize it. This will give

dyi
dt ′
= Ailyi . (27)

Let us now show the meaning of this for the original resonant system. We have the following
scheme of transformation:

P ′

original resonant system (t) H⇒ unknown system (t)

(NT T ) ⇓ ⇑ (NT T )−1

non-resonant system (t ′) H⇒ linear system (t ′)
P

WhereNT T and(NT T )−1 respectively denote the new time transformation and its inverse,
P is the generalized Poincaré transformation performed on the system obtained afterNT T ,
andP ′ is given by

P ′ = (NT T )−1 ◦ P ◦NT T .
The local character ofP implies thatP andNT T commute, and thusP ′ = P . This means
that we can performP directly on the original system. The unknown system of the scheme, is
then given by(NT T )−1 acting on the linear system, hence by

dyi
dt
= yiAilf (y).

The functionf (y) is just the quasi-monomial
∏N
k=1 x

Blk
k expressed in terms of they variables.

From a geometrical point of view, the phase space of this system is strictly the same as
the one of the system (27), since the NTT is just a reparametrization of time. Hence, we have
reached the goal of the usual normal form theory: sketch the phase-portrait of the system.
There is, however, a question that has no answer at this stage: the usual normal form approach
is local: it only concerns a neighbourhood of the fixed point under study. What about the NTT
approach?

In order to simplify the discussion, let us focus on the (homogeneous) LV embedding,
instead of the QM system. Then, if the system before the NTT reads

dxi
dt
= xi

N∑
j=1

Mijxj

(where, eventually, the entries of one of the lines of the matrixM are all vanishing) the only
NTT that will preserve a linear part, reads

dt = dt ′ x−1
l
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with l integer between 1 andN . With no loss of generality, we may choosel = N . The system
then becomes

dxi
dt ′
= xi

N∑
j=1

Mijxjx
−1
N .

Let us now perform the LV embedding on this system: we have to add the variables

xN+i = xix−1
N .

for i < N . We then have

dxi
dt ′
= MiNxi + xi

N−1∑
j=1

MijxN+j

for i varying from 1 toN , and

dxN+i

dt ′
= xN+i (MiN −MNN) + xN+i

N−1∑
j=1

(Mij −MNj)xN+j

for i = 1, . . . , N − 1. We now have a new LV system on which we may perform the Poincaré
transformation (15). The structure of the matrix defined by this new(2N − 1)-dimensional
system has the consequence that the only monomial appearing in the Poincaré transformation,
are monomial of the variablesxN+1, . . . x2N−1. Hence, viewed as a transformation on the
original system, these monomials are monomials inx1

xN
, . . . ,

xN−1

xN
. As a consequence of that,

the point of phase space around which the series is built is:(0, 0, . . . ,0,∞).
As claimed, we have thus obtained a method to approximate the trajectories far from

the fixed point under study. Moreover, the NTT can be performed with the other variables,
providing each time a series that is valid in a different sector.

The situation is less clear for a QM system (or even for an analytic system), since the LV
system from which we started, is already an embedding of a previous system. This means that
the origin in the phase space of the LV system may already correspond to a point at infinity
for the QM system. In this context, no general considerations can be made, except that the
transformation can be, once again, explicitly written, using the formulae (20) and (19) with
different parameters; starting with the system (24), we have:

xi = yi
∞∑
s=0

∑
j1,...,js

P̃
(QM)
ij1...js

N∏
k=1

y
Bj1k+Bj2k+···+Bjs k−s·Blk
k .

The second summation is taken over all the indicesj1, . . . , js , each of them running from 1 to
m, but without taking the valuel. TheP̃ (QM)ij1...js

are:

P̃
(QM)
ij1...js

= Aij1(Aij2 + M̃j1j2) . . . (Aijs + M̃j1js + · · · + M̃js−1js )

M̃js l(M̃js−1l + M̃js l) . . . (M̃j1l + · · · + M̃js l)

whereM̃ij =
∑

k(Bik − Blk)Akj . We can check that these expressions become (19) and (20)
whenBlk = 0 for all k, andAkl = λl .

We also have to specify that, when integrating the NTT relation, one may find a relation
betweent ′ andt such thatt ′ becomes infinite for a finitet .

In order to illustrate the method, we will now treat an example.
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Figure 1. Phase portrait in the(n1, n2) plane.

4.1. Example

Let us study the following two-dimensional system:

ẋ1 = x1 + x1(−x1 + x2)

ẋ2 = −x2 + x2(x1 + x2)
(28)

which is already of the LV type. This system possess three fixed points:(0, 0), (1, 0) and
(0, 1). The phase portrait in the neighbourhood of the origin is drawn in figure 1. Moreover,
the fixed point under study,(0, 0), is resonant.

The Poincaŕe transformation can be obtained by using (15), letting all the undetermined
coefficients of (16) vanish. This gives, up to order three:

x1 = y1(1− y1− y2 + y2
1 + y2

2) + o(y4)

x2 = y2(1 +y1− y2 + y2
2) + o(y4).

We now have to be careful in order to compute the normal form of the system. Indeed,
the inverse Poincaré series obtained by using (17) and (18) (again letting the undetermined
coefficients vanish) is not the inverse of the direct Poincaré transformation obtained above.
We thus have to compute the inverse series by hand. This allows us to compute the normal
form system, which reads:

ẏ1 = y1 + 2y2
1y2 + o(y4)

ẏ2 = −y2 + o(y4).

Figure 2 is a plot of the(x1, x2) plane. As expected, the normal form approximation (in
grey) is close to the exact solution (in black) in the neighbourhood of(0, 0). Higher-order
approximations are expected to give better and better approximations. However, since the
Poincaŕe series usually has a finite radius of convergence, nothing good can be obtained
outside a certain neighbourhood of the origin. The calculation of the radius of convergence
of the Poincaŕe series is not the object of this paper, thus we will not study this question here.
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Figure 2. Normal form trajectories (in grey) versus exact trajectories (in black) around the fixed
point.
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Figure 3. Comparison between the exact solutions (in black) and the normal form approximation
(in grey) around the point(∞, 0).

Figure 3 shows the normal form approximation (in grey) in coordinates which are(1/x1, x2).
Clearly, the approximation fails.

Let us now change the time parametrization as follows:

dt = dt ′ x−1
1 .
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This gives the system
dx1

dt ′
= −x1 + x1(x

−1
1 + x−1

1 x2)

dx2

dt ′
= x2 + x2(−x−1

1 + x−1
1 x2).

(29)

The LV embedding is obtained by adding the two following variables to this system:

x3 = x−1
1

x4 = x−1
1 x2

with the use of which, we can write the four-dimensional LV system

x ′1 = −x1 + x1(x3 + x4)

x ′2 = x2 + x2(−x3 + x4)

x ′3 = x3 + x3(−x3− x4)

x ′4 = 2x4 + x4(−2x3)

where the notationx ′1, x
′
2, . . . denotes the derivative with respect tot ′. The system seems to be

resonant, but it is not the case, since the nonlinear terms are such that no coefficient is divergent
in the Poincaŕe series (the system (29) is not resonant in the sense defined for the QM context).
In fact, the only variables that appear in the Poincaré series arez3 andz4, which are in fact
z−1

1 andz−1
1 z2, wherezi denote the new Poincaré variables. The Poincaré series for the new

four-dimensional system reads

x1 = z1(1 + z3 + 1
2z4 − 1

3z3z4) + o(z4)

x2 = z2(1− z3 + 1
2z4 + z2

3 + 1
8z

2
4 − z3z4) + o(z4)

x3 = z3(1− z3 + 1
2z4 + z2

3 + 1
8z

2
4 + 4/3z3z4) + o(z4)

x4 = z4(1− 2z3 + 3z2
3 + 1

3z3z4) + o(z4).

Using the expression ofz3 andz4 in terms ofz1 andz2, one gets forx1 andx2

x1 = z1

(
1 +

1

z1
+
z2

2z1
− z2

3z2
1

)
+ o

(
z2

z1

2
)

x2 = z2

(
1− 1

z1
+
z2

2z1
+

1

z2
1

+
z2

2

8z2
1

− z2

z2
1

)
+ o

(
z2

z1

2
)
.

It is clear that the terms that we neglected above are important whenx1 gets close to zero.
Hence, the approximation fails there. However, forx2 close to zero andx1 close to∞, the
approximation is good. Figure 4 shows, in the(1/x1, x2) plane, the exact solution (in black)
versus the above approximation (in grey). This is to be compared to the normal form result in
the same domain (figure 3).

Systems with two quasi monomials

We now focus on exact properties related to generalized resonances (GR).
With the GR relation, we can show that a system that contains two monomials can either

be brought to a non-resonant system or is simply integrable. For such systems,B has two lines
andA two columns, hence(B ◦ A) is a(2× 2) square matrix.

If only one (among the two possible) GR condition is satisfied, the system can be written
as a non-resonant system. Otherwise, the two GR conditions are simultaneously satisfied. Let
us write the GR condition forl = 1:

v2(B ◦ A)21 = v2(B ◦ A)11
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Figure 4. Comparison between the exct solutions (in black) and the normal form approximation
obtained after new time transformation (in grey) around the point(∞, 0).

with a non-vanishingv2. So we have(B ◦A)21 = (B ◦A)11. The GR relation forl = 2 gives
(B ◦ A)12 = (B ◦ A)22. The matrix(B ◦ A) of the LV system is degenerated, and it reduces
to one equation.

Non-resonant perturbations

We now show that a system such that all its GR conditions are satisfied can always be modified
by adding one monomial to each equation, in such a way that it becomes reducible as shown
above (i.e. to a system with one monomial).

Consider theN -dimensional QM system, withm monomials and such that there exists,
for any indexl between 1 andm, a vectorv of integers that are positive or vanishing (with
vl = 0 for somel, and|v| > 1), and satisfying

m∑
j=1

vj (B ◦ A)jl = |v|(B ◦ A)ll .

Now let us add a monomial that could be a perturbation to the system, with free coefficients
and exponents:

ẋi = xi
m∑
j=1

Aij

n∏
k=1

x
Bjk
k + xiαi

n∏
k=1

x
βk
k

and try to find values of theαi and theβk in such a way that a GR condition is never satisfied
for this system.

The new QM matriceśA andB́ read, in terms of the matricesA andB of the original
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system:

Á =


A11 A12 . . . A1m α1

A21 A22 . . . A2m α2
...

...
...

...

An1 An2 . . . Anm αn


and:

B́ =


B11 B12 . . . B1n

B21 B22 . . . B2n
...

...
...

Bm1 Bm2 . . . Bmn
β1 β2 . . . βn

 .
The product(B́ ◦ Á) is

(B́ ◦ Á) =
(
(B ◦ A)(m×m) (B ◦ α)(m×1)

(β ◦ A)(1×m) (β ◦ α)(1×1)

)
.

Hence, the GR conditions are the following; first forl between 1 andm, we have
m∑
j=1

vj (B ◦ A)jl + v(m+1)(B ◦ β)l = |v|(B ◦ A)ll .

Now v is a vector with(m + 1) components. If we choose, for them first components ofv,
the vector that satisfied the GR condition for the initial system, we are left with

v(m+1)(B ◦ β)l = v(m+1)(B ◦ A)ll
which is satisfied forvm+1 = 0, a choice which is compatible with the restrictions on the vector
v. Thus, for them first columns of(B́ ◦ Á), it is not possible to fulfil the requirement that the
system is not resonant.

Now let us look at the last column of(B́ ◦ Á); we have
m∑
j=1

vj (B ◦ α)j = |v|(β ◦ α)

or:
m∑
j=1

vj

[ n∑
k=1

(Bjk − βk)αk
]
= 0.

If we now chooseβk > |Bjk| (here| · | denotes the absolute value) for allj and allk, and
αk > 0 for all k, the relation will never be satisfied with an acceptablev. Hence the system is
linearizable. Note that we can chooseαk = ε andβk = β, with β as large as we want, andε
as small as we want, as in the case of a perturbation: such a perturbation would make a system
integrable which originally was not.

5. Conclusions

In this paper, we presented new developments, among which the most interesting one is,
without doubt, the generalization of resonances. Even if the generalization of linearizing
transformations to more general mappings than simple Taylor series has been envisaged [15],
to the best of our knowledge, the reduction scheme of a system to something else than its linear
part is completely new. This new type of reduction opens interesting perspectives in the theory
of integrability, and in the construction of invariants manifolds.
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The explicit form of the generalized Poincaré series can be used to build computer algebra
algorithms. This will be the subject of a further publication, in which we will develop a
graphical tree method to perform resummations of the series. This formalism can also be used
to optimize the recursion relations used to calculate the coefficients. The trees also permit one
to unify the Taylor series in powers of the time, the Poincaré series and another series previously
discussed in [3], which is a regular perturbation series. Numerical examples already indicate
that the resummations of the series permit to reach a given accuracy with less calculations
than in usual numerical integration methods. Furthermore, for regular perturbation series, it
generates results close to singular perturbation methods.
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Ecalle J 1992 Singularités non abordables par la géoḿetrieAnn. Inst. Fourier Grenoble4273–164
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